

Ethnicity influences total serum vitamin B₁₂ concentration: a study of Black, Asian and White patients in a primary care setting

Jessica O'Logbon ,¹ Martin Crook,^{2,3,4} David Steed,⁵ Dominic Jon Harrington ,^{6,7} Agata Sobczyńska-Malefora ,^{6,7}

¹GKT School of Medicine, King's College London Faculty of Life Sciences and Medicine, London, UK

²Clinical Biochemistry and Metabolic Medicine, Guy's, St Thomas' Trust, London, UK

³Clinical Biochemistry and Metabolic Medicine, Lewisham and Greenwich Trust, London, UK

⁴Hon Professor in Biochemical Medicine, King's College London, London, UK

⁵Viapath Informatics, Viapath, Francis House, St Thomas' Hospital, London, UK

⁶Faculty of Life Sciences and Medicine, King's College London, London, UK

⁷The Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK

Correspondence to

Jessica O'Logbon, GKT School of Medicine, King's College London Faculty of Life Sciences and Medicine, London SE1 1UL, UK; jessica.o'logbon@kcl.ac.uk

Received 2 March 2021

Revised 21 March 2021

Accepted 6 April 2021

ABSTRACT

Aims A growing body of evidence suggests that ethnicity and race influence vitamin B₁₂ metabolism and status yet clinical awareness of this is poor, causing doubts regarding diagnosis and treatment. Moreover, deficiency and insufficiency cut-offs are universally applied for this test in most diagnostic settings. The objective of this study was to assess serum vitamin B₁₂ concentrations in Black, Asian and White primary care patients in London, UK, particularly in patients of Black or Black British ethnic origin and establish if there is a need for specific reference ranges.

Methods Serum B₁₂ results from 49 414 patients were processed between January 2018 and November 2019 using the Architect assay (Abbott Diagnostics) at St. Thomas' Hospital, London, UK. Age, sex and ethnicity data were collected from the laboratory Health Informatics Team.

Results Black patients (n=13 806) were found to have significantly higher serum vitamin B₁₂ concentration across all age groups and both sexes, especially Nigerian patients (median B₁₂ 505 pmol/L, IQR: 362–727, n=891), compared with Asian and White ethnic groups (p<0.001). Binary logistic regression analysis revealed that the Black or Black British ethnic group had the strongest association with elevated serum B₁₂ (>652 pmol/L) (adjusted OR 3.38, 95% CI 3.17 to 3.61, p<0.0001).

Conclusions It is likely that a combination of genetic and acquired/environmental factors are responsible for the ethnic differences in serum B₁₂. This suggests that there is a need for ethnic-specific reference ranges with indications for the incorporation of age and sex too.

INTRODUCTION

Serum vitamin B₁₂ (cobalamin, B₁₂) assays measure the total vitamin B₁₂ concentration in circulation, namely vitamin B₁₂ bound to two binding proteins: haptocorrin (HC) and transcobalamin (TC), circulating as holoHC (holoHC,~80%) and holoTC (holoTC,~20%) respectively.¹ HoloTC is taken up via receptors to meet metabolic demand. Serum B₁₂ is the most commonly used laboratory test in routine practice to help diagnose or rule out vitamin B₁₂ deficiency, which can have severe neurological and haematological consequences. However, among patients who have their serum vitamin B₁₂ concentrations measured for this reason, elevated concentrations are unexpectedly prevalent.² Therefore, the pathophysiology of elevated vitamin B₁₂

has recently gained more attention in clinical practice.^{3,4}

Vitamin B₁₂ is not considered toxic at high concentrations; however, it is important to determine if the elevation is due to vitamin supplementation, which is often the case, since other reasons for elevated B₁₂ may be clinically significant. Several studies have linked renal, hepatic, infectious and autoimmune diseases, as well as some cancers, to high serum B₁₂ concentrations.^{5–8} The associations of high serum B₁₂ with cancer or liver diseases have been explained by a release of HC from proliferating leukocytes, malignant tissues, damaged hepatocytes and an increased synthesis or decreased clearance of HC and TC proteins,^{3,4,9} leading to B₁₂ accumulation in the blood. A screening strategy for addressing high serum B₁₂ values has been suggested.³

There is also evidence demonstrating significant differences in serum B₁₂ concentrations among patients from different ethnic and racial groups.¹⁰ Studies from Africa have shown that black people have higher serum B₁₂ concentrations than their white counterparts, whereas deficiency is more prevalent in Asian communities.^{11,12} The differences in serum B₁₂ have led to a diagnostic dilemma as many clinicians are unaware of ethnic influence on B₁₂ status, compounded by the fact that deficiency and insufficiency cut-offs are universally applied for this test.

The aim of this study was to evaluate serum B₁₂ concentrations in a highly ethnically diverse group of south-east London patients in relation to race and ethnicity, as well as age and sex, and determine whether ethnic-specific B₁₂ reference ranges should be developed.

MATERIALS & METHODS

Anonymised serum B₁₂ results from patients referred for B₁₂ testing from south London primary care clinics were collected from Laboratory Informatics systems. Information about the ethnicity, age and sex of patients was also obtained.

Patients were categorised into five ethnic groups: Asian or Asian British, Black or Black British, White, Mixed and Other. In addition, there were 67 subcategories (country of origin) within these five main ethnic groups. In this work, we focus principally on the Asian or Asian British, Black or Black British and White ethnic groups. Patients were between 0 and 105 years old.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: O'Logbon J, Crook M, Steed D, et al. *J Clin Pathol* Epub ahead of print: [please include Day Month Year]. doi:10.1136/jclinpath-2021-207519

Table 1 Prevalence of study population by age, gender and ethnic group

Serum vitamin B ₁₂ concentrations (pmol/L)	Low (<138) n=2176	Normal (138–652) n=42 752	High (653–996) n=3041	Very high (>997) n=1449
Median age in years (IQR)	54 (36–69)	50 (35–65)	50 (37–62)	57 (44–73)
Sex, n (% within sex)	Female n=34 079	1472 (4.3%)	29 284 (85.9%)	2261 (6.6%)
	Male n=15 339	704 (4.6%)	13 468 (87.8%)	387 (2.5%)
Ethnic group, n (% within ethnic group)	White n=25 817	1426 (5.5%)	23 064 (89.3%)	743 (2.9%)
	Asian or Asian British n=3739	223 (6.0%)	3229 (86.4%)	158 (4.2%)
	Black or Black British n=13 806	300 (2.2%)	11 129 (80.6%)	1778 (12.9%)
	Mixed n=1432	60 (4.2%)	1238 (86.5%)	98 (6.8%)
	Other n=4625	167 (3.6%)	4092 (88.5%)	264 (5.7%)
				102 (2.2%)

Percentages are displayed as proportions of totals by row.

Serum B₁₂ was measured between January 2018 and November 2019 using the Architect assay (Abbott Diagnostics) at St. Thomas' Hospital, London, UK. The reference range used was 138–652 pmol/L (187–883 ng/L). Serum B₁₂ concentrations were assigned to one of the following categories: low (<138 pmol/L), normal (138–652 pmol/L), high (653–996 pmol/L) and very high (>997 pmol/L⁴).

The data were analysed using IBM SPSS V.26.0. Descriptive statistics were used for the distribution of serum B₁₂ by ethnicity, age and sex. The data were positively skewed, therefore, non-parametric tests were used. The Kruskal-Wallis test was used to determine differences between serum B₁₂ concentrations across ethnic groups, categories and sexes.

Binary logistic regression analysis assessed the relationship between elevated serum B₁₂ concentrations (>652 pmol/L) with ethnicity, sex and age. A significance level of p<0.05 was used and values were adjusted for by the Bonferroni correction for multiple tests.

RESULTS


Between January 2018 and November 2019, 49419 serum B₁₂ results were processed. The median age of patients was 50 years (IQR: 36–65) and the median serum B₁₂ concentration was 300 pmol/L (IQR: 216–427). Sixty-nine per cent of patients were female. In each ethnic group, most patients (>80%) had a serum B₁₂ concentration within the laboratory reference range (138–652 pmol/L). The Asian or Asian British ethnic group had the greatest proportion of low serum B₁₂ concentrations, while the Black or Black British ethnic group had the greatest proportion of high and very high serum B₁₂ concentrations (table 1).

There was a statistically significant difference in serum B₁₂ concentrations between males and females ($\chi^2=111.2$, p<0.001). A greater proportion of female patients had high and very high B₁₂ concentrations compared with males (table 1).

Across all age groups and both sexes, Black or Black British patients had significantly higher serum B₁₂ concentrations

Table 2 Median serum vitamin B₁₂ concentrations by age group within each ethnic group with IQR

Age group (years)	Asian or Asian British		Black or Black British		White	
	Median vitamin B ₁₂ (pmol/L) (IQR)	n	Median vitamin B ₁₂ (pmol/L) (IQR)	n	Median vitamin B ₁₂ (pmol/L) (IQR)	n
0–17	365 (255–554)	219	444 (309–655)	772	346 (252–505)	709
18–29	274 (208–348)	359	330 (236–466)	1253	248 (187–331)	3005
30–39	269 (208–363)	627	365 (258–516)	1989	277 (211–376)	4215
40–49	263 (199–375)	681	394 (280–571)	2719	279 (211–374)	3911
50–59	266 (201–395)	506	401 (282–583)	3093	273 (204–373)	4304
60–69	251 (190–410)	590	412 (289–583)	1725	263 (196–357)	3692
70–79	265 (184–420)	463	381 (268–564)	1277	260 (193–66)	3136
80+	306 (215–469)	294	330 (227–469)	978	256 (190–369)	2845
Grand median (pmol/L) (IQR)	272 (201–396)	3739	383 (269–555)	13 806	269 (201–368)	25 817

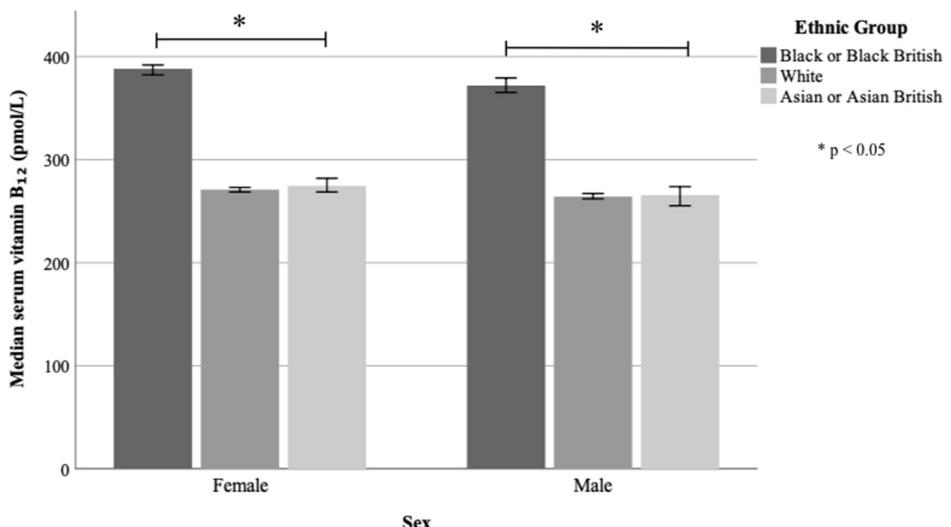
Figure 1 Median serum vitamin B₁₂ (pmol/L) for age groups within each ethnic group.

(table 2, figures 1 and 2) compared with Asian or Asian British and White ethnic groups ($p<0.001$).

Children (0–17 years) had significantly higher serum B₁₂ concentrations in each ethnic group compared with their adult counterparts (18 years and over) ($p<0.001$) (figure 1). An overall decline in serum B₁₂ concentration was seen as patients got older (Spearman's r : -0.028 , $p<0.001$).

A further look into the vitamin B₁₂ levels of children revealed that Black or Black British children had significantly higher B₁₂ concentrations than those from Asian or Asian British and White ethnic groups (table 3) ($p<0.0001$). Black or Black British infants (0–3 years old) had the highest median B₁₂ concentration (713 pmol/L (480–942)) (table 3).

The odds of having an elevated serum B₁₂ concentration and being a Black or Black British female under 18 years old was higher than the odds of having an elevated serum concentration in any other patient in this study (table 4). Being of Black ethnic origin had the most powerful association with elevated serum B₁₂ (adjusted OR 3.38, 95% CI 3.17 to 3.61, $p<0.001$).


Within the Black or Black British ethnic group, the following subcategories were present: Black British, African, Nigerian, Somali, Caribbean, other Black background and unspecified. The last two categories were excluded from analysis since the backgrounds of these patients were unknown. The highest serum B₁₂ concentration was seen in Nigerians (505 pmol/L (362–727), $n=891$) (figure 3).

DISCUSSION

Primary finding

We found that the Black or Black British ethnic group had significantly higher serum B₁₂ concentrations compared with Asian and White people, across all age groups and both sexes.

The exact underlying causes for the differences in serum B₁₂ between black patients and their Asian and white counterparts are unknown. However, there are many potential reasons for these findings.

Figure 2 Median serum vitamin B₁₂ (pmol/L) for males and females in each ethnic group.

Table 3 Median serum vitamin B₁₂ concentrations in children (≤17 years old) within each ethnic group

Age groups (years)	Asian or Asian British	Black or Black British	White			
	Median vitamin B ₁₂ (pmol/L) (IQR)	n	Median vitamin B ₁₂ (pmol/L) (IQR)	n	Median vitamin B ₁₂ (pmol/L) (IQR)	n
0–3	644 (400–764)	22	713 (480–942)	91	473 (349–693)	84
4–8	492 (379–752)	62	632 (518–861)	142	497 (347–610)	177
9–13	314 (258–386)	62	440 (323–631)	225	331 (245–463)	184
14–17	279 (224–394)	73	349 (251–467)	314	270 (210–362)	264
Grand median (pmol/L) (IQR)	365 (255–554)	219	444 (309–655)	772	346 (252–505)	709

Genes

Several genome-wide association studies have suggested that ethnic-specific genetic factors influence vitamin B₁₂ status,¹³ although evidence of this in non-European populations is limited.^{14 15} The Fucosyltransferase 2 (*FUT2*) and Transcobalamin-II (*TCN2*) genes have shown the strongest associations with serum B₁₂ concentrations.^{16–18}

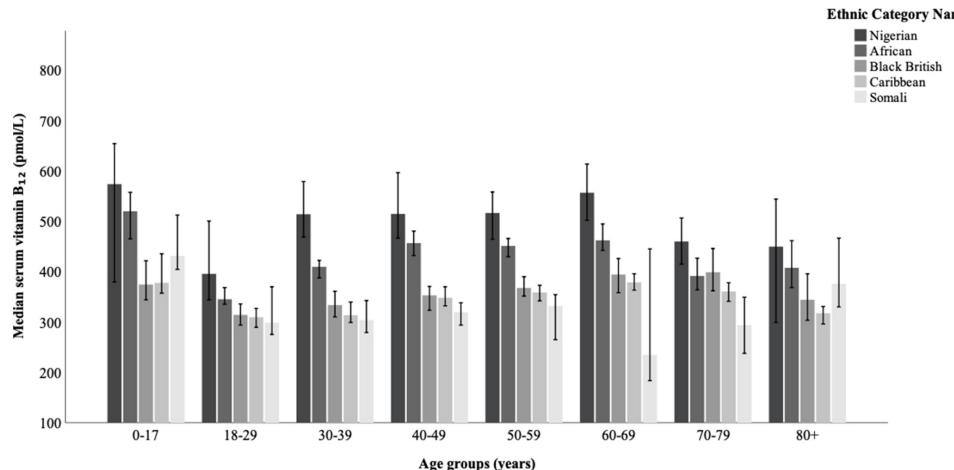
1,2-*FUT2* is encoded by the highly polymorphic *FUT2* gene located on chromosome 19. It produces H type 1 and 2 antigens, which act as precursors to each of the ABO blood group antigens. Gastric pathogens such as *Helicobacter pylori* adhere to gastric and duodenal mucosa using these H antigens and can cause infection, interfering with the release of intrinsic factor and leading to B₁₂ malabsorption.¹⁹

Three single-nucleotide polymorphisms (SNPs): rs602662, rs492602 and rs601338 have been most commonly studied regarding their ethnic-specific differences and strong linkage disequilibrium.¹⁸ They are thought to be the strongest causal variants for the association between *FUT2* and serum B₁₂ concentration. These SNPs have the following genotypes: GG (secretor variant), AG and AA (non-secretor variant).

The AA (non-secretor) genotype of the rs601338 SNP is the most strongly associated with higher serum B₁₂ concentrations in Caucasian populations in the USA, Iceland and Ireland.^{16 20 21} It is well known that the most common cause of this non-secretor phenotype is a nonsense mutation, W143X (rs601338 G>A).¹⁸ This encodes a stop codon that inactivates the *FUT2* enzyme. Prior hypotheses regarding the mechanism of action causing these higher serum B₁₂ levels have focused on the influence of *FUT2* SNPs on the attachment of *H. pylori* to the gastric mucosa. In non-secretors, microbes such as *H. pylori* cannot adhere to the H antigens, therefore, there is a lower chance of vitamin B₁₂ malabsorption.^{22–25} However, it has recently been found

that *FUT2* genotypes can also influence the concentration of holoHC. This is thought to be because of altered fucosylation of HC (whether *FUT2* gene expression directly causes this is still unclear), as HC is a glycosylated protein while TC is not.²¹ It is possible that this differential glycosylation of HC can affect the protein's secretion and renal clearance which ultimately contributes to serum vitamin B₁₂ levels. Further studies are needed to investigate this relationship further.

Nevertheless, approximately 20% of individuals in Caucasian populations have the rs601338 AA non-secretor genotype, whereas a greater number of individuals carry the 'G' allele in Indian populations (23%), which could partly explain the differences in serum B₁₂ concentrations between these ethnic groups.²⁶ In addition to this, it is widely reported that vitamin B₁₂ deficiency and suboptimal B₁₂ concentrations are prevalent in South Asians, which has been attributed to the high number of vegetarians present in this population.¹² Cultural and religious practices that promote vegetarianism are inherent to certain Indian communities, placing them at greater risk of B₁₂ deficiency, especially during pregnancy.²⁷ As well as significantly lower B₁₂ concentrations compared with other ethnicities (White, Black, non-Indian Asian and Latin American), hyperhomocysteinaemia and elevated methylmalonic acid (MMA) concentrations have been found, most notably in Indian men.²⁸


Furthermore, the *TCN2* gene, located on chromosome 22, encodes for TC. Variations in the TC protein can affect the binding characteristics of vitamin B₁₂ to TC or recognition of the B₁₂-TC complex by the TC receptor (CD320), with possible repercussions on B₁₂ availability in the cells.²⁹

Higher B₁₂-binding capacities have been seen in Ugandans and Nigerians than in white people,^{30–32} which is thought to be linked to higher frequencies of certain *TCN2* alleles in African populations.³³ This could explain why black patients had higher serum B₁₂ concentrations than white patients in our study, particularly Nigerians compared with other black backgrounds. Ethnic and racial differences have also been seen in HC concentrations. A study in South Africa found higher levels of plasma HC in black people compared with white people.³⁴ Similarly, a US study reported higher plasma HC levels in black people compared with other ethnic/racial groups and in women compared with men, which are both consistent with the findings in our study.³⁵ Furthermore, these differences are not only seen in adults but also in cord blood samples in both Africa and Europe.³⁶ This, coupled with our finding that Black or Black British infants had the highest median serum B₁₂ concentrations in our sample suggests that there may be a strong genetic component underpinning ethnic differences in B₁₂ levels.

In our study, only 2.2% of Black or Black British patients were 'B₁₂-deficient' (defined as serum B₁₂ <138 pmol/L) compared with 6.0% of Asian or Asian British, 5.5% of White and 4.2% of Mixed patients. Functional markers of status, such as total plasma homocysteine and MMA, were not available. Despite this, studies that have measured these values have found similar results, with B₁₂ deficiency (defined as serum B₁₂ <258 pmol/L, serum MMA >271 nmol/L and MMA >serum 2-methylcitrate) found to be more common (approximately 2–3 times) in elderly white people compared with African-Americans.^{37 38} This may be because there are higher metabolic demands for vitamin B₁₂ for which black people must meet, warranting further investigation into whether there are ethnic differences in metabolic requirements, B₁₂-binding capacities and circulating levels of B₁₂-binding proteins to supplement the current literature.^{30–34} This can bring us closer to understanding the underlying causes for

Table 4 Binary logistic regression analysis of high (>652 pmol/L) serum vitamin B₁₂ concentrations (138–642 pmol/L used as the reference group)

Variables compared	Females vs males	Children vs adults	Black vs non-black	Constant
Crude OR	0.19	0.73	1.22	-2.98
Adjusted OR (95% CI)	1.21 (1.12 to 1.30)	2.07 (1.83 to 2.36)	3.38 (3.17 to 3.61)	0.051 (—)
SE	0.038	0.065	0.034	0.037
Significance (p value)	<0.0001	<0.0001	<0.0001	<0.0001

Figure 3 Median serum vitamin B₁₂ (pmol/L) for age groups within each black ethnic category.

B₁₂ differences and develop more accurate reference ranges to deliver personalised care.

Comorbidities

Alternatively, significant associations between excess serum B₁₂ and neoplasms have been reported, and studies have since attempted to identify the diagnostic value of the serum B₁₂ assay as an early marker for cancer.^{3 39} The carcinomas most frequently seen with elevated serum B₁₂ concentrations are hepatocellular carcinoma and secondary liver tumours, followed by breast, colon, stomach and pancreatic cancers.³ The incidence of primary liver cancer has been reported to be around twice as high in black men than white men,⁴⁰ and in a more recent study focused on ethnic groups as opposed to races, Black Caribbean and Black African men had incidence rate ratios of 1.2 and 3.3, respectively.⁴¹ Concurrently, in our study, serum B₁₂ concentrations were significantly higher in African patients than Caribbean patients ($p < 0.0001$).

Additionally, high serum vitamin B₁₂ in autoimmune and inflammatory diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) may be linked to an increase in TC during the acute phase of inflammation.⁴² Diseases like RA and SLE are more common in females, which could provide a possible confounding explanation, although one with small effect, for some of the higher concentrations seen in females.^{43 44}

Secondary findings

Our results showed that serum B₁₂ concentrations decreased with age which coincides with current literature that older patients have lower serum concentrations of B₁₂, as the capacity to absorb B₁₂ from a food-based diet decreases with age.⁴⁵ This is primarily due to diminished acid secretions in the stomach resulting in decreased whole-body vitamin B₁₂ stores, thus placing elderly people at greater risk of B₁₂ deficiencies.⁴⁶ Likewise, medications such as H₂-receptor (histamine) antagonists and proton pump inhibitors, which block the absorption of protein-bound vitamin B₁₂, are widely prescribed to elderly patients to treat a variety of acid-related conditions.⁴⁷

Another finding was that children in each of the ethnic groups had significantly higher serum B₁₂ concentrations compared with their adult counterparts. Some studies have suggested that conditions like autoimmune lymphoproliferative syndrome and zinc deficiency are associated with highly elevated serum B₁₂ in children. It is not known how many children in this sample, if any,

may have had such comorbidities, or if they were diagnosed on their visit to their primary care provider.^{48 49}

Finally, a higher frequency of elevated vitamin B₁₂ concentrations was seen in women compared with men yet studies reporting on associations between sex and serum B₁₂ concentrations are conflicting. Fernandes-Costa *et al*⁵⁰ found that in healthy young adults, unsaturated and total B₁₂ binding capacities, HC and serum B₁₂ concentrations were significantly higher in females. The mechanisms underlying these differences are not yet known. Another study concluded that elderly males were at a higher risk of folate and B₁₂ deficiencies than females.⁵¹ However, other studies have not detected any statistically significant differences in serum B₁₂ concentrations between sexes.^{52 53}

Limitations

Lifestyle factors, pregnancy, vitamin B₁₂ supplementation, medications, multiple measurements for the same patient and comorbidities were not accounted for, which will have had a confounding effect on vitamin B₁₂ status.⁵³⁻⁵⁶ The diagnosis of B₁₂ deficiency is a complex task as serum B₁₂ measurement has limited sensitivity and specificity for diagnosing deficiency.^{57 58} A diagnostic gold standard has yet to be found but the key functional markers of B₁₂ status, such as total plasma homocysteine, MMA and holotranscobalamin were not measured for these patients. We also cannot confirm to what extent the differences seen were driven by HC abundance.

CONCLUSIONS

Our findings demonstrate that there are significant ethnic differences in serum B₁₂ concentrations, with people of a Black

Take home messages

- There were significant ethnic differences in serum B₁₂ concentrations observed in this study, with Black/Black British patients having higher concentrations than patients from White and Asian/Asian British ethnic backgrounds.
- A strong hereditary component for elevated serum B₁₂ concentrations in black people is likely.
- This work supports the need for ethnic-specific reference ranges with indications for the potential incorporation of age and sex too.

ethnic origin having higher concentrations than White and Asian people. This was seen in all age groups and both sexes. A strong hereditary component for elevated serum B₁₂ concentrations in black people is likely. This work supports the need for the future development of ethnic-specific reference ranges with indications for the potential incorporation of age and sex.

Handling editor Mary Frances McMullin.

Twitter Dominic Jon Harrington @DrDJHarrington

Acknowledgements The authors acknowledge Dr Ralph Carmel from New York, USA, for kindly providing feedback to develop this manuscript.

Contributors JO performed the statistical data analyses, designed the figures and drafted the manuscript, JO and AS-M interpreted the results. AS-M and MC designed the study. DS acquired data. JO, MC, DS, DJH and AS-M edited the manuscript. AS-M supervised the work and edited the final manuscript. All authors approved the final version.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request. This data are not in a repository. These data include deidentified diagnostic results (audit data) available from Agata Sobczyńska-Malefora at Viapath, London (<https://orcid.org/0000-0001-7349-9517>). Reuse is not permitted.

ORCID iDs

Jessica O'Logbon <http://orcid.org/0000-0003-1216-9703>

Dominic Jon Harrington <http://orcid.org/0000-0003-4786-9240>

Agata Sobczyńska-Malefora <http://orcid.org/0000-0001-7349-9517>

REFERENCES

- Green R, Allen LH, Bjørke-Monsen AL. Vitamin B₁₂ deficiency. *Nat Rev Dis Primers* 2017;3:17054.
- Sobczyńska-Malefora A, Critcher M, Harrington DJ. The application of holotranscobalamin and methylmalonic acid in hospital patients and total vitamin B12 in primary care patients to assess low vitamin B12 status. *J Hematol Thromb* 2015;1:8.
- Andrés E, Serraj K, Zhu J, et al. The pathophysiology of elevated vitamin B12 in clinical practice. *QJM* 2013;106:505–15.
- Arendt JFB, Nexo E. Unexpected high plasma cobalamin : proposal for a diagnostic strategy. *Clin Chem Lab Med* 2013;51:489–96.
- Baker H, Leevy CB, DeAngelis B, et al. Cobalamin (vitamin B12) and holotranscobalamin changes in plasma and liver tissue in alcoholics with liver disease. *J Am Coll Nutr* 1998;17:235–8.
- Vreugdenhil G, Lindemans J, van Eijk HG, et al. Elevated serum transcobalamin levels in anaemia of rheumatoid arthritis: correlation with disease activity but not with serum tumour necrosis factor alpha and interleukin 6. *J Intern Med* 1992;231:547–50.
- Arendt JFH, Sørensen HT, Horsfall LJ, et al. Elevated vitamin B12 levels and cancer risk in UK primary care: a thin database cohort study. *Cancer Epidemiol Biomarkers Prev* 2019;28:814–21.
- Ryg J, Nybo M, Hallas J. Cancer incidence in persons with elevated cobalamin levels. *Eur J Clin Invest* 2013;43:557–61.
- Arendt JFB, Nexo E. Cobalamin related parameters and disease patterns in patients with increased serum cobalamin levels. *PLoS One* 2012;7:e45979.
- Saxena S, Carmel R. Racial differences in vitamin B12 levels in the United States. *Am J Clin Pathol* 1987;88:95–7.
- Kwee HG, Bowman HS, Wells LW. A racial difference in serum vitamin B12 levels. *J Nucl Med* 1985;26:790–2.
- Quay TAW, Schroder TH, Jeruszka-Bielak M. High prevalence of suboptimal vitamin B₁₂ status in young adult women of South Asian and European ethnicity, *Applied Physiology, Nutrition and Metabolism* 2015;40:1279–86.
- Haggarty P, B-vitamins HP. B-Vitamins, genotype and disease causality. *Proc Nutr Soc* 2007;66:539–47.
- Lin X, Lu D, Gao Y, et al. Genome-Wide association study identifies novel loci associated with serum level of vitamin B12 in Chinese men. *Hum Mol Genet* 2012;21:2610–7.
- Nongmaithem SS, Joglekar CV, Krishnaveni GV, et al. Gwas identifies population-specific new regulatory variants in FUT6 associated with plasma B12 concentrations in Indians. *Hum Mol Genet* 2017;26:2551–64.
- Hazra A, Kraft P, Lazarus R, et al. Genome-Wide significant predictors of metabolites in the one-carbon metabolism pathway. *Hum Mol Genet* 2009;18:4677–87.
- Hazra A, Kraft P, Selhub J, et al. Common variants of FUT2 are associated with plasma vitamin B12 levels. *Nat Genet* 2008;40:1160–2.
- Surendran S, Adaikalakoteswari A, Saravanan P, et al. An update on vitamin B12-related gene polymorphisms and B12 status. *Genes Nutr* 2018;13:2.
- Grarup N, Sulem P, Sandholt CH, et al. Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. *PLoS Genet* 2013;9:e1003530.
- Velkova A, Diaz JEL, Pangilinan F, et al. The FUT2 secretor variant p.Trp154Ter influences serum vitamin B12 concentration via holo-haptocorrin, but not holo-transcobalamin, and is associated with haptocorrin glycosylation. *Hum Mol Genet* 2017;26:4975–88. Kapitan K, et al. Helicobacter pylori—is it a novel causative agent in vitamin B12 deficiency? *Arch Intern Med*. 2000;160(9):1349–1353..
- Tong M, McHardy I, Ruegger P, et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. *Isme J* 2014;8:2193–206.
- Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. *Nat Rev Genet* 2017;18:690–9.
- Wacklin P, Tuimala J, Nikkilä J, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. *PLoS One* 2014;9:e94863.
- Serpa J, Mendes N, Reis CA, et al. Two new FUT2 (fucosyltransferase 2 gene) missense polymorphisms, 739G->A and 839T->C, are partly responsible for non-secretor status in a Caucasian population from Northern Portugal. *Biochem J* 2004;383:469–74.
- Kelly RJ, Rouquier S, Giorgi D, et al. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. *J Biol Chem* 1995;270:4640–9.
- Tanwar VS, Chand MP, Kumar J, et al. Common variant in FUT2 gene is associated with levels of vitamin B(12) in Indian population. *Gene* 2013;515:224–8.
- Jeruszka-Bielak M, Isman C, Schroder TH, et al. South Asian ethnicity is related to the highest risk of vitamin B12 deficiency in pregnant Canadian women. *Nutrients* 2017;9, doi:10.3390/nu9040317. [Epub ahead of print: 23 Mar 2017].
- Carmel R, Mallidi PV, Vinarskiy S. Hyperhomocysteinaemia and cobalamin deficiency in young Asian Indians in the United States. *Am. J. Hematol.*
- Gick GG, Arora K, Sequeira JM. Cellular uptake of vitamin B12: role and fate of TCblR/CD320, the transcobalamin receptor, experimental cell research 2020;396:1. 2020.
- Kajubi SK, Okel RM. Absorption of vitamin B12 in Uganda Africans. *Afr J Med Sci* 1973;4:403–8.
- Fleming AF. Serum vitamin B12 and vitamin B 12 binding capacity of southern Nigerian blood donors. *West Afr Med J Niger Pract* 1968;17:25–30.
- Fleming AF, Ogunfumilade YA, Carmel R. Serum vitamin B12 levels and vitamin B12-binding proteins of serum and saliva of healthy Nigerians and Europeans. *Am J Clin Nutr* 1978;31:1732–8.
- Brandt V, Kerrich JE, Metz J. The distribution of serum vitamin B12 concentrations in some population groups in South Africa. *SAfr J Med Sci* 1963;28:125–31.
- Carmel R. Ethnic and racial factors in cobalamin metabolism and its disorders. *Semin Hematol* 1999;36:88–100.
- Porck HJ, Frater-Schroder M, Hakkinen AK. Transcobalamin II polymorphism in African populations. *Vitamin B12 Part 1 by Zagalak B* 1979:863–6.
- Carmel R, Brar S, Frouhar Z. Plasma total transcobalamin I. Ethnic/racial patterns and comparison with lactoferrin. *Am J Clin Pathol* 2001;116:576–80.
- Stabler SP, Allen RH, Fried LP, et al. Racial differences in prevalence of cobalamin and folate deficiencies in disabled elderly women. *Am J Clin Nutr* 1999;70:911–9.
- Johnson MA, Hausman DB, Davey A, et al. Vitamin B12 deficiency in African American and white octogenarians and centenarians in Georgia. *J Nutr Health Aging* 2010;14:339–45.
- Carmel R, Eisenberg L. Serum vitamin B12 and transcobalamin abnormalities in patients with cancer. *Cancer* 1977;40:1348–53.
- National Cancer Intelligence Network. Cancer incidence and survival by major ethnic group in England, 2002–2006 2009.
- Jack RH, Konfortion J, Coupland VH, et al. Primary liver cancer incidence and survival in ethnic groups in England, 2001–2007. *Cancer Epidemiol* 2013;37: 34–8. 1..
- Kalyoncu U, Buyukasik Y, Akdogan A, et al. Increased serum vitamin B12 levels are associated with adult-onset still's disease with reactive macrophage activation syndrome. *Joint Bone Spine* 2010;77:131–4.
- Molad Y, Rachmilewitz B, Sidi Y, et al. Serum cobalamin and transcobalamin levels in systemic lupus erythematosus. *Am J Med* 1990;88:141–4.
- Grindulis KA, Calverley M, Cox C. Rheumatoid arthritis: is serum vitamin B12 high in active disease? *J Rheumatol* 1984;11:211–2.
- Stover PJ. Vitamin B12 and older adults. *Curr Opin Clin Nutr Metab Care* 2010;13:24–7.
- Hinds HE, Johnson AA, Webb MC, et al. Iron, folate, and vitamin B12 status in the elderly by gender and ethnicity. *J Natl Med Assoc* 2011;103:870–8.
- Miller JW. Proton pump inhibitors, H₂-receptor antagonists, metformin, and vitamin B-12 deficiency: clinical implications. *Adv Nutr* 2018;9:511S–8.

48 Betul Ergul A, Turanoglu C, Karakukcu C, et al. Increased vitamin B₁₂ levels in children with zinc deficiency. *Int J Vitam Nutr Res* 2017;87:247–52.

49 Bowen RAR, Dale JK, Brown M, et al. Significantly Elevated Vitamin B₁₂ Levels in Autoimmune Lymphoproliferative Syndrome (ALPS), a Rare Lymphoproliferative Disorder with Apoptosis Defect. *Blood* 2008;112:4898.

50 Fernandes-Costa F, van Tonder S, Metz J. A sex difference in serum cobalamin and transcobalamin levels. *Am J Clin Nutr* 1985;41:784–6.

51 Margalit I, Cohen E, Goldberg E, et al. Vitamin B12 deficiency and the role of gender: a cross-sectional study of a large cohort. *Ann Nutr Metab* 2018;72:265–71.

52 Jacob E, Wong KJ, Herbert V. A simple method for the separate measurement of transcobalamins I, II, and III: normal ranges in serum and plasma in men and women. *J Lab Clin Med* 1977;89:1145–52.

53 Rogne T, Tielemans MJ, Chong MF-F, et al. Associations of maternal vitamin B12 concentration in pregnancy with the risks of preterm birth and low birth weight: a systematic review and meta-analysis of individual participant data. *Am J Epidemiol* 2017;185:212–23.

54 Ruscin JM, Page RL, Valuck RJ. Vitamin B(12) deficiency associated with histamine(2)-receptor antagonists and a proton-pump inhibitor. *Ann Pharmacother* 2002;36:812–6.

55 de Jager J, Kooy A, Lehert P, et al. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. *BMJ* 2010;340:c2181.

56 Saltzman JR, Kemp JA, Golner BB, et al. Effect of hypochlorhydria due to omeprazole treatment or atrophic gastritis on protein-bound vitamin B12 absorption. *J Am Coll Nutr* 1994;13:584–91.

57 Lindenbaum J, Savage DG, Stabler SP, et al. Diagnosis of cobalamin deficiency: II. relative sensitivities of serum cobalamin, methylmalonic acid, and total homocysteine concentrations. *Am J Hematol* 1990;34:3499–107.

58 Campos AJ, Risch L, Nydegger U. Diagnostic accuracy of holotranscobalamin, vitamin B12, Methylmalonic acid and homocysteine in detecting B12 deficiency in a large, mixed patient population. *Disease Markers* 2020.